
 1

Controlling Access to Music Selection System on Mobile Agent

Architecture

Khin Wai Moe, Naychi Lai Lai Thein

Computer University (Hinthada)

khinwaimoe@gmail.com

Abstract

This paper describes the mobile agent-based

music selection that generates dynamic playlist

based on suggestions from multiple users and

presents the design and development of music

selection service which is implemented using the

mobile agent architecture. Controlling Access to

Music Selection System on mobile agent architecture

can generate dynamic playlist based on the user

requests. Music selections are performed

autonomously by agents. A music service allows

users participating in selecting music.

This system consists of three types of stationary

agents and one mobile agent. Vote collector (VC)

mobile agent collects all votes from each voter (VO)

which behalf of each user and sends candidate music

lists to vote manager (VM) agent which dispatch

candidate music lists from vote administrator (VA)

agent to VC. Then VM forward received candidate

music with votes to VA again. Finally VA generates

playlist with most demand music selected from each

user.

Keyword: Mobile Agent

1. Introduction

Mobile agents are created by a distributed

application at a computer site and launched to

another site using an underlying mobile agent

platform. An instance of the platform running at the

remote site can receive the mobile agent and dispatch

it to the distributed application running at that site. A

family of computer applications in electronic

government can be suitably carried out using a

combination of mobile and stationary agents,

reducing network traffic by allowing the least number

of interactions across platforms. An example of such

application is electronic voting.

Controlling Access to Music Selection System on

mobile agent architecture builds an understanding

how music is currently listened to people. Playlist is

created based on users’ votes collected by mobile

agent. Mobile vote collector VC agent which co-

ordinates with a stationary vote manager would visit

each of the voters site and collect their vote for music

they desired. This service helps increasing the level

of participatory social activities collaborative

entertainment.

In this paper, section 2 discusses related areas and

problem issues of the system. Session 3 explains

mobile agent of the system. The system design and

detailed implementation are presented in section 4

and the last is conclusion.

2. Related Areas and Problem Issues

Selection of requested music and generating

playlist are done by a staff or music selector –a disk-

jockey (DJ) who need always online. In Jukola,

O’Hara [6] show an interactive MP3 Jukebox device

designed to allow a group of people. In public DJ,

Leitich [10] presented round base multiplayer game

is used to submit the music tracks to a server which

need connection each time music is submit.

Komninos [1] presented the use of mobile agent as

DJ and use TEEMA framework for agent

development. Benedicenti [7] also presented the use

of TEEMA framework for mobile agent development

of collaborative media sharing. The Party Vote

system [2] takes the voting concept from Jukola and

applies it in small group situations such as parties.

Some issues related to mobile agent are as

follows:

 Execution performance: often sacrificed in order

to achieve portability via code interpretation.

Justin time compilation is one way towards

better performance.

 Robustness: involves fault tolerance schemes

(e.g., coping with hosts crashing) and is key for

trust and acceptance of the technology in

companies.

 Location transparency: requires a mechanism to

keep track of the places where the agents are

executing at every moment.

 Stability mobile agents can be sent when the

network connection is alive and return results

when the connection is re-established.

 2

 Trusted and un-trusted: Some mobile agent

platforms treat trusted and un-trusted agent

different. Un-trusted agents are prohibited to run

dangerous command.

2.1. Mobile Agent

The mobile agent concept is illustrated in Figure 1.

A client computer consists of an application

environment, for example, OS/2 or Microsoft

Windows, which contains one or more applications

for interaction with a remote server. These

applications are bound to an execution environment

for mobile agents. The agent execution environment

will also need to bind to various operating system

functions, such as the memory manager, the timer,

the file system and so forth. In particular the agent

execution environment needs to bind to the message

transport service in order to send and receive mobile

agents via the communication infrastructure.

Client

application

environment

Server

application

environment

Agent

execution

environment

Agent

execution

environment

Messaging

sub-system

Messaging

sub-system

Communication Infrastructure

Figure 1: Conceptual model of mobile agent

Mobile agents encapsulate and transport data and

code in a single mobile entity and not bound to the

system where it begins execution. They are

autonomous computer programs that can act in the

interest of an entity, migrating between different

network locations, executing tasks locally and

continuing their execution at the point where they

stopped before migration. Mobile agents can also

have features like intelligence and ability to

cooperate

Thus, an agent can be injected into the network to

perform a task on a collection of distributed hosts, or

perform tasks on the pervasive environment on behalf

of an application, and then return the results of the

requested actions on each host to the originating

node. Figure 2 shows use of mobile agents which can

reduce network connections.

Figure 2: Difference between (a) non-mobile

and (b) mobile connections

The use of mobile agents can bring several

advantages to applications and their users: (1)

reducing network traffic, as interactions can be

carried out locally, independently of network latency;

(2) asynchronous and decentralized execution,

allowing the user to disconnect from the network

when agents are performing a task; (3) ability to

detect changes in the execution environment and

react autonomously, simplifying the development of

distributing systems that are more robust and fault

tolerant.

2.2. Mobile Agent Pattern

This Controlling Access to Music Selection

System on mobile agent architecture use itinerary

design pattern of mobile agent.

Figure 3: Itinerary pattern of mobile

agent

 Itinerary pattern provides a way to execute the

migration of an agent, which will be responsible for

executing a given task in remote hosts. The agent

receives an itinerary on the source agency, indicating

the sequence of agencies it should visit. Once in an

agency, the agent executes its task locally and then

continues on its itinerary. After visiting the last

agency, the agent goes back to its source agency.

Figure 3 illustrates this pattern.

3. Controlling Access to Music Selection

System on Mobile Agent Architecture

This section describes use of mobile agent for

controlling access of music selection. This system

consists of several interacting agents, Vote Collector

(VC), Vote Manager (VM) and Vote Administrator

(VA) and Voters (VOs). The VA is responsible for

registering candidate music list for elections and

commissioning VM. The VC is a mobile agent

mandated by a stationary VM agent to collect votes

from stationary voting agents (VOs).

Use case diagram in Figure 4 shows the vote

collection and reporting process, in which the VC

collects votes from voters (VOs), and then forwards

the votes to the VM which in turn forwards it to the

Home

2(n-1) connections

(a)

Home

n connections

(b)

 3

VA. The VA verifies the votes and delivers the

results to the VM, and voters.

Figure 4: Use case diagram for music vote

collection and termination

Figure 5: The sequence diagram of placing

candidate music list

The sequence diagram in Figure 5 describes

placing candidate music list. The list of candidate

music and voters are sent by VA to the VM, which in

turn forward the list to VC. Once the list is received

by VO, the VO instantiate its stationary agent with

user requested music. On election time, VC will visit

the VOs on its list and get their votes, and once done,

they return back to and reporting the collected votes

to VM.

Figure 6: The collaboration diagram of placing

candidate music list

The precedent Figure (Figure 6) describes the

sequence diagram of the placing candidate playlist.

Then to place candidate playlist:

 A VM agent creates VC mobile agent vcMA

(1:createVC());

 Then, the vcMA invokes it to place the candidate

playlist (2:place_candidatePL());

 The vcMA should moves to the platform of VO

in order to finish its tasks (3:moveTo:VO);

 Finally, vcMA interacts locally with the VO in

order to finish its tasks (4:collect_vote()).

4. System Design and Implementation

The mobile agent VC collect votes from VO as

follow:

(i). VC gets candidate music list and voters list

from VM.

(ii). VC goes to and collects votes from the VO1.

(iii). Then VC goes to VO2 and finally to VOn.

(iv). When VC finish collections of votes, return

back to and deliver votes to VM.

VM will dispatch the result of the votes to the VA.

Finally, VA generates playlist according to the user

selection/votes. This system is implemented as the

following steps:

Step 1. VA agent generates and sends candidate

playlist to VM agent.

Step 2. VM agent dispatches these lists to mobile

agent VC.

Step 3. VC goes to each host and collects votes

from one VO to other VOs agent which

works on behalf of each user and bring the

music suggestion from user.

Step 4. VC agent gathers the information from each

VO agent.

Step 5. VC agent sends all collected information

including selected music list to VM.

Step 6. VM forward candidate music list and voters

to VA agent.

Step 7. VA agent generates playlist with most

demand music for broadcast.

Votes Collection &

Termination

VA: Voting Administrator

VM: Vote Manager

VC: Vote Collector

VO: Voter

Voting

Music

Deliver

Votes

Deliver All

Votes

Deliver

Results

VA

VM

M

VO

Collect Vote

from VO

M

VC

 M

 4

Figure 7: Controlling access to music selection

system on mobile agent architecture

Admin create candidate music list for music

selection process and ending the music selection

process. Admin choose music tracks for candidate

music list. When music selection start, mobile agent

is created and collect vote from each user. Figure 8

shows the available location and visited location of

mobile agent. For agent migration, the beforeMove ()

method is called at the starting location when the

move operation has successfully completed, so that

the moved agent instance on the destination container

is about to be activated and the original agent

instance is about to be stopped. However, as an

immediate consequence, any information that must be

transported by the agent to the new location has to be

set before the doMove () method is called. For

instance setting an agent attribute in the beforeMove

() method will have no impact on the moved instance.

The afterMove () method is called at the destination

location as soon as the agent has arrived and its

identity is in place.

void beforeMove()

{

 gui.dispose();

 gui.setVisible(false);

}

void afterMove()
{

// creates and shows the GUI

 gui = new MobileAgentGui(this);

//if the migration is via RMA the

 variable nextSite can be null.

if(nextSite != null){

 visitedLocations.addElementnextSite);

 for(inti=0;i<visitedLocations.size();i++)

 gui.addVisitedSite(

 (Location)visitedLocations.elementAt(

 i));

}

gui.setVisible(true);

}

The beforeMove () method is executed just before

moving the agent to another location. The afterMove

() method is executed as soon as the agent arrives to

the new destination. It creates a new GUI and sets the

list of visited locations and the list of available

locations (via the behavior) in the GUI.

Figure 8: Mobile agent with available location

and visited location

Admin check voting results and create music

playlist for listening. When music selection starts,

user can choose desired track and playback the

playlist after voting end by admin. Figure 9 shows the

flash player with voted songs as playlist.

 5

Figure 9: Flash player with number of votes for

each song

6. Limitations and Advantages

Mobile agents reduce the network load. The motto

is simple: move the computations to the data rather

than the data to the computations. They overcome

network latency. Mobile agents offer a solution,

because they can be dispatched from a central

controller to act locally and directly execute the

controller’s directions. They encapsulate protocols.

When data are exchanged in a distributed system,

each host owns the code that implements the

protocols needed to properly code outgoing data and

interpret incoming data, respectively.

They execute asynchronously and autonomously.

Often, mobile devices must rely on expensive or

fragile network connections. Tasks that require a

continuously open connection between a mobile

device and a fixed network probably will not be

economically or technically feasible. To solve this

problem, tasks can be embedded into mobile agents,

which can then be dispatched into the network. After

being dispatched, the mobile agents become

independent of the creating process and can operate

asynchronously, and autonomously.

7. Evaluation Result

The experiment is repeated for every activity,

with the locations on the same host and on

different hosts. When the music selection is start

mobile agent is created on server machine. On remote

machine, remote container is created to migrate

mobile agent from server machine and then mobile

agent migrates to that host. Before moving to remote

host, beforeMove() method is executed and

communicate with other JADE (Java Agent

Development Environment) platform from remote

host. The afterMove () method is executed after

arrived to remote host. This system was tested with

the different locations on different hosts. The testing

environments for a number of locations located on

different hosts were four PCs : server hosted the

Controller Agent and the JADE main container

and the other with container for every host. Figure

10 shows communication of machines to migrate

mobile agent. All PC's were connected to a 100Mbps

network. The performance was measured for every

activity based on the number of locations and the

average time taken to complete the test.

Figure 10: Mobile agent arrive to remote host

8. Conclusion

The main purpose of this system is to apply mobile

agent architecture to the Music Selection System.

The design of the system intends to automate the

entire operations of music selection and helps

administrative processes. The proposed mobile agent

approach reduces human involvements in processes.

This music selection system has many advantages

over conventional systems.

 Encourages social activities and user

participation

 All users can suggest their individual songs to

the group

 Automated less user effort

 Flexible-high level of automation

 Ease of use

 Platform independent

 Location independent

 No need stand-alone media player, just need

plug-in on web browser

 Support for disconnected mode of operation

 Reduce network connections

9. References

[1] A. Komninos, Neil Cameron, Colin Feron, and

Richard Allan, Alistair Lindsay Glasgow Caledonian

University 70 Cowcaddens Road Glasgow G4 0BA,

UK + 44 141 331 3095andreas.komninos@gcal.ac.uk;

AmbientDJ: Enabling Interaction between People

and Socially Aware Environments.

[2] D. Sprague, University of Victoria 3800 Finnerty

Road Victoria, BC, Canada dsprague@cs.uvic.ca

Fuqu Wu University of Victoria 3800 Finnerty Road

Victoria, BC, Canada fuquwu@cs.uvic.ca Melanie

mailto:dsprague@cs.uvic.ca
mailto:fuquwu@cs.uvic.ca

 6

Tory University of Victoria 3800 Finnerty Road

Victoria, BC, Canada mtory@cs.uvic.ca. Music

Selection using the Party Vote Democratic Jukebox.

[3] F. Sterling, Bob Tarr, Danko Nebesh, Mobile Agents,

Department of Defense USA 2000. Introduction to

Mobile Agent Systems and Applications.

[4] K. Saleh, C.El-Mirr, A. Mourtada and Y. Morad

American university of Sharjah P.P.Box 26666,

Sharjah, United Arab Emirates. Specifications of a

Mobile Electronic Voting System and a Mobile Agent

Platform.

[5] K. Miao, Lan Wang and Kenji Taguchi School of

Computing, Leeds Metropolitan University

Department of Computing, School of Informatics,

University of Bradford. Modeling Mobile Agent

Applications in UML2 Activity Diagrams.

[6] K. O’Hara,1, 2, Matthew Lipson1, 2, Marcel Jansen1,

2, Axel Unger1, Huw effries1, 2, Peter Macer11The

Appliance Studio University Gate Park Row Bristol,

UK 2University of Bristol Computer Science

Department Mobile Bristol C/O FutureLab 1 Canons

Road Bristol, UK. Jukola: Democratic Music Choice

in a Public Space.

[7] L. Benedicenti and Songsiri Srisawangrat Faculty of

Engineering University of Regina, Regina, SK, S4S

0A2, Canada. Using Agents for a Participatory

Collaborative Media Sharing Experience.

[8] L. Emerson Ferreira de Araujo,Patricia Duarte de

Lima Machado, Jorge Cesar Abbrantes de Figueiredo,

Flavio Ronison Samoaio. Implementing Mobile Agent

Design Patterns in the JADE framework.

[9] M. David, Nichols Hamilton, Department of

Computer Science University of Waikato New

Zealand {sallyjo, dmn}@cs.waikato.ac.nz.Exploring.

Social music behavior an investigation of music

selection at parties.

[10] S. Leitich, Markus Toth, University of Vienna,

Institute for Distributed and multimedia Systems

Liebiggasse 4/3-4, 1010 Vienna, Austria,

stefan.leitich@univie.ac.at,a0025690@univie.ac.

at. PublicDJ - Music selection in public spaces

as multiplayer game.

mailto:mtory@cs.uvic.ca
mailto:dmn%7D@cs.waikato.ac.nz.Exploring

